|
楼主 |
发表于 2009-7-27 00:16:12
|
显示全部楼层
Vacuum Control
Vacuum heat treating has certainly benefited from automation. Traditionally, vacuum applications have higher quality demands and require extensive traceability. As with all the other areas of heat treating, control-sensor technology and sophistication are providing the ability to control a process with more precision, resulting in higher-quality products. Vacuum control has traditionally used either hard-wired relay technology or programmable logic controllers for sequencing and safeties. Vacuum heat treating has used process controllers, or PLCs, to run complete cycles using digital I/O, pressure sensors and thermocouples (Fig.3).
In vacuum heat treating, precision processing is always required. The phases of the process are typically the safety interlocks, pumping sequence, heating and cooling. From an automated-processing standpoint, the process controller is used to manage these steps. Either communication or discrete I/O is used to verify completion of the safety and pumping sequences. Once the heating circuit is enabled, algorithms are used to guarantee that temperatures are ramped appropriately to ensure the rate of heating doesn’t produce a significant amount of stress on the load. The process controllers are also used to verify the temperature of the workpieces during the heating and cooling cycle. Load sensors used during vacuum heat treating verify a uniform part temperature, ensuring the desired metallurgical properties. More sophisticated controllers can manage load-sensor offsets, which provide a higher degree of accuracy when determining uniform part temperature. The ramping and cooling temperatures, when properly controlled, reduce the stress and distortion on the parts. Controllers can also manage out-of-tolerance issues or outgassing due to contaminated parts. With real-time visibility of vacuum levels, an automated programmable controller can be set up to guarantee correct vacuum levels.
Most vacuum furnaces are versatile when it comes to partial pressure and cooling. Gas-pressure quenches usually consist of nitrogen or argon and are used in conjunction with a cooling fan. Pressure gauges and contactors are monitored to ensure that these events are ready and have been turned on/off depending on the desired step in the process. With the sensors and verifications built into the processes, proper vacuum levels can be maintained, and the quality of the gas-quench media can be assured.
| [size=80%]Fig. 4. Electronic data recorder - "Paperless" chart recording (real time and historical data) |
| Electronic Data and Record Keeping
As a definition, automation replaces manual operations with mechanical or electronic equipment. As industry standards and customer requirements increase, the requirement of traceability and proof of processing is common. Companies are looking for an efficient method to generate the required paperwork. Computer systems are being installed to provide data and other load characteristics. SCADA systems (Supervisory Control and Data Acquisition) are known for providing quick access to information and a foundation for plant automation.
The goal of these systems is to provide a user-friendly environment to enter data associated with the load and to make the process of gathering this information quick and easy. With the use of scanning technology, computers and recipe programmers, the loading systems provide a method of automating this process. The off-the-shelf relational database tools that run on standard personal computers enable end-user requirements specific to data capture and reporting to be incorporated into the load-tracking system. SCADA systems can be used to initiate programs running on each piece of equipment and then constantly monitor the equipment for an “end of cycle” notification. At the end of the cycle, the load is marked as complete, and a record of the process is stored electronically (Fig. 4).
The other benefit of load-tracking systems is the reduction of paper. With the acceptance of digital data, the trend is to move away from paper recorders. New electronic data-logging technology accomplishes the same thing, but paper can be produced when required. The logged data is easily retrieved and backed up. The direct benefit comes with reliability and integrity of the data as well as a reduction in maintenance labor to support the equipment. Information – both real-time and historical – is accessible at your fingertips, and there is no more changing paper stock on the recorders. These solutions are affordable and competitively priced with paper recording systems (Fig. 5).
Meeting industry standards with automated controls and data acquisition becomes easier. Process-control technology, with built-in alarms for deviation around set point, enables compliance for continuously monitoring temperature/atmosphere required by CQI-9. This takes the place of a manual verification and sign-off procedure. CQI-9 also calls out management review of the monitoring system in place. Plant-wide data acquisition provides a quick and easy way for management and quality assurance to review daily reports and ensure compliance.
Conclusions
| [size=80%]Fig. 5. Load tracking database |
| Precise control of the measured process variables allows for the delivery of quality products. Automation and information increase the value of the heat-treat operation. Equipment will not be the only component providing value. Quality-driven heat-treat shops embrace technology to meet customer expectations the first time. Current tools provide the foundation for an error-free operating environment and a simple method for meeting industry requirements and customer demands. IH
For more information: Contact Jim Oakes, Sales & Software Development Engineer for Super Systems Inc., 7205 Edington Dr., Cincinnati, Ohio 45249; tel: 513-772-0060; fax: 513-772-9466; e-mail: joakes@supersystems.com
Additional related information may be found by searching for these (and other) key words/terms via BNP Media SEARCH at www.industrialheating.com: process automation, programmable logic controller, dewpoint, endothermic generator, carbon boost, carbon diffuse, gas pressure quench
SIDEBAR: State-of-the-Art Automation
Phoenix Heat Treating (PHT) has been delivering quality to customers since the early 1900s. With state-of the-art automation, computerized modeling and programmable control systems, as well as in-house metallurgical engineering and inspection labs, PHT is set up to manage the most difficult heat-treating requirements.
In early 2001, PHT set on a path to take advantage of the technology that was being made available to the heat-treating industry. PHT starts with documenting the job using Cornerstone’s Visual Shop application. For carburizing parts, the process is verified using Super Systems CarbCALCII carburizing-simulation software. The simulation will determine if the programmed control recipes need adjusting. They can be updated from a computer workstation. The required steps are documented, and the necessary paperwork is produced with bar codes for the specific job. As the job makes it through the shop, each step is tracked. For processes performed in furnaces, PHT uses Super Systems’ programmable controls to provide an automated process. As processes are completed, they are automatically time-stamped so an electronic record is stored along with all the process data.
PHT has a streamlined approach to produce an intelligent heat-treating environment. The use of computers, software and smart process controls has provided PHT with all the tools necessary to deliver quality parts efficiently.
Jim Oakes
Super Systems Inc., Cincinnati, Ohio |
|